Exploring the Design Space of DRAM Caches

نویسندگان

  • Matthew Hicks
  • Calvin Lin
چکیده

Die-stacked DRAM caches represent an emerging technology that offers a new level of cache between SRAM caches and main memory. As compared to SRAM, DRAM caches offer high capacity and bandwidth but incur high access latency costs. Therefore, DRAM caches face new design considerations that include the placement and granularity of tag storage in either DRAM or SRAM. The associativity of the cache and the inherent behavior and constraints of DRAM are also factors to consider in the design of DRAM caches. In this thesis, we explore and analyze the different factors of DRAM cache design and their impact upon performance; the goal is to identify promising areas of the design space that deserve further study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C3D: Mitigating the NUMA bottleneck via coherent DRAM caches

Massive datasets prevalent in scale-out, enterprise, and high-performance computing are driving a trend toward ever-larger memory capacities per node. To satisfy the memory demands and maximize performance per unit cost, today’s commodity HPC and server nodes tend to feature multi-socket shared memory NUMA organizations. An important problem in these designs is the high latency of accessing mem...

متن کامل

Fundamental Latency Trade-offs in Architecting DRAM Caches Outperforming Impractical SRAM-Tags with a Simple and Practical Design

This paper analyzes the design trade-offs in architecting large-scale DRAM caches. Prior research, including the recent work from Loh and Hill, have organized DRAM caches similar to conventional caches. In this paper, we contend that some of the basic design decisions typically made for conventional caches (such as serialization of tag and data access, large associativity, and update of replace...

متن کامل

Exploring Design Space of 3D NVM and eDRAM Caches Using DESTINY Tool

To enable the design of large sized caches, novel memory technologies (such as non-volatile memory) and novel fabrication approaches (e.g. 3D stacking) have been explored. The existing modeling tools, however, cover only few memory technologies, CMOS technology nodes and fabrication approaches. We present DESTINY, a tool for modeling 3D (and 2D) cache designs using SRAM, embedded DRAM (eDRAM), ...

متن کامل

Memshare: a Dynamic Multi-tenant Key-value Cache

Web application performance heavily relies on the hit rate of DRAM key-value caches. Current DRAM caches statically partition memory across applications that share the cache. This results in under utilization and limits cache hit rates. We present Memshare, a DRAM key-value cache that dynamically manages memory across applications. Memshare provides a resource sharing model that guarantees rese...

متن کامل

Asynchronous DRAM Design and Synthesis

We present the design of a high performance on-chip pipelined asynchronous DRAM suitable for use in a microprocessor cache. Although traditional DRAM structures suffer from long access latency and even longer cycle times, our design achieves a simulated core sub-nanosecond latency and a respectable cycle time of 4.8ns in a standard 0.25um logic process. We also show how the cycle time penalty c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014